YZ13 - Computer Security

Network Security

Kwotag Xat{nkokoAdkng

« Computers connected in a network

- but also: smartphones, fridges, loT devices, ...
 Each device has an IP address
« Packets are routed via intermediate nodes

« Still using IPv4 (almost 40 year old!)

- very very hard to replace

+ Attacker model
- Intercept packets
- Modify packets
- Inject packets
- Control some routers

- Participate in any protocol

« Useful to consider combinations of the above

Internet protocol suite

Four layers (7 in the OSI model)

* Link

- Physical addresses

- Physical aspects of communication
* Internet

- Addressing (source/dest IP)
- Routing

- Time to live

Internet protocol suite

Four layers (7 in the OSI model)

* Transport
- Source/dest ports
- Ordering of packets (Sequence numbers)
- ACKs, checksums

« Application

- The “real data”, application-dependent

Internet protocol suite

Protocols

« Link
- Ethernet
- WiFi
- DSL

* Internet
- IP
- ICMP

Internet protocol suite

Protocols

* Transport
- TCP
- UDP

« Application
- HTTP /HTTPS
- SSH
- SMTP

Internet protocol suite

Packet example

Physical Layer: eth
the 2 MAC addresses

+ IP indication \

0f db

7

95

00

0d

a3

08 00

75 c8
05 e6
££ 2d
9a 47
53j2E
70 6f
2e 62

50

54
22 2f
75 61 67
2d 45
20 64
72 3a
be 2e
6e 74
28 4d
50 43
0 41
2e 39
a7 65
37 2e
20 6b
74 3a
0d 0a

10

54
32
6c
61
31
o0d
65
63
66
68
6f
20
63
ad
28
(33
0d
65
69

00

20
2
2f
64
2e
3a
6f
6e
74
6d
ad
69
61
6c
4b
6f
0a
70
2e

01
2f
32
74
75
31
11

64
61
74
2f
6f
6e
63
65
a8
29
43
2d
61

37
31
2e

63
65
69
74

0d
Ta
74
20
Gy
54
20
6f
61
2e

ac

e

<0

25 b

21
21
61
-zl
2e
63
0a
3a
0a
2f
6c
68
b
el
66
65
16
6e

01

2e
ed
64
30
69
2e

70 67

6c

e

1c
63
Ta
66
77
2d
35
55
20
2
69
69
69
fa
65

a5
10
80
62
36
Ge
6d

Network Layer: IP
IP addresses, TTL,
checksum, fragmentation

00!

/- ./A.db8
..GET /cnn/2008/
US/02/27/katrina
.poll1/t1.2135.mo
n.beads.ap.ipg H
TTB/1.1..Rccept:

Transport Layer: TCP
Ports, Seq Ack numbers,
checksum, timestamps

2 Application Layer: HTTP
67 enn.con/..User-ha . Request: GET
30 “ent: Mozilla/5.0

20 (Macintosh; U; Request URI
Be PPC Mac 0S X; en

31) AppleWebKit/41 Referrer

65 7.9 (KHTML, like U . f
34 Gecko) Safari/4 Ser"agent into
6e 17.8..Connection ; B

68 : heep-alive,.Ho Connection info
0d st: i.a.cnn.net.

« Connectionless communication

- using only source/dest IP addresses
* Routing

- communication across network boundaries
- routing tables kept by routers
- no authentication

« Fragmentation & reassembly

- No reliability

« Connection-based communication

- identified by source/dest IP + port (multiplexing)

* Server process “listens” to a port

- Often determined by the application protocol (HTTP, SMTP, etc)

« Client process connects to dest IP+port

- Source port selection usually random

» Connection established by handshake

Reliability

UDP

« Connectionless communication over IP

* Fast alternative to TCP

- Only 8 bytes overhead, no handshakes
- Stateless

Some higher-level features

- addressing based on IP+port (multiplexing)

- checksums

* But many missing
- No ACKs (unreliable)
- No ordering

Often used for “streaming”-like applications

Traceroute

traceroute to google.com (216.58.215.46), 30 hops max, 60 byte packets

1
2
3
4
5
6
7
8
9

10
11
12
13

_gateway (195.134.67.1) 0.715 ms 0.789 ms 0.884 ms
uoa-ilisia-1-gw.kolettir.access-link.grnet.gr (62.217.96.172) 0.763 ms 0.796 ms 0
grnet-ias-geant-gw.mx1.ath2.gr.geant.net (83.97.88.65) 1.574 ms 1.630 ms 1.620 ms
ae0.mx2.ath.gr.geant.net (62.40.98.140) 31.556 ms 31.650 ms 31.547 ms
ae2.mx1.mil2.it.geant.net (62.40.98.150) 25.654 ms 27.861 ms 27.793 ms
72.14.203.32 (72.14.203.32) 25.593 ms 25.766 ms 25.500 ms
108.170.245.73 (108.170.245.73) 64.548 ms 108.170.245.89 (108.170.245.89) 73.238 m
209.85.142.221 (209.85.142.221) 72.001 ms 72.14.238.21 (72.14.238.21) 71.999 ms 6
216.239.35.201 (216.239.35.201) 78.302 ms 78.299 ms 78.277 ms
209.85.251.217 (209.85.251.217) 54.466 ms 72.14.238.54 (72.14.238.54) 54.472 ms 1
108.170.245.1 (108.170.245.1) 52.509 ms 52.443 ms 50.669 ms
108.170.235.15 (108.170.235.15) 54.116 ms 51.975 ms 51.967 ms
par21s17-in-f14.1e100.net (216.58.215.46) 51.943 ms 54.241 ms 54.202 ms

Traceroute

e Time to live (TTL)
- IP header
- Decreased at every hop

- If 0 the router discards and notifies the originator (ICMP time
exceeded)

* Traceroute: repeatedly send packets (ICMP echo request)
- withTTL=1, 2, ...
- 3 packets for every value
- Until we reach the host (or a threshold)
- Routers might not respond

TCP 3-way handshake

Client Server
« Connection identified by

source/dest address/port

« Sequence numbers (SN)
in every message

« Handshake 2
- SYN(SNQ)
~ SYN(SNs)-ACK(SNO) ek
- ACK(SNs)

- Data-exchange (bidirect.)
< ESTABLISHED >

Three-Way Handshake

TCP 3-way handshake

Client Server

Connection identified by
source/dest address/port

Sequence numbers (SN)
in every message

« Handshake
- SYN(SNQ)
~ SYN(SNs)-ACK(SNO) ek
- ACK(SNs)

- Data-exchange (bidirect.)
< ESTABLISHED >

* What can go wrong here?

Three-Way Handshake

Client Sl;l:\"g‘:l‘
* Flood the server with SYNs (Attacker) (Vigtim)
e Butno ACK! SYN-ACK
« Connections stay “half-open” on the s

server until they timeout

- Keeping state consumes resources
- Can lead to Denial of Service (DoS) W’

TCP-SYN Flood Attack

Client Sl;l:\"g‘:l‘
* Flood the server with SYNs (Attacker) (Vigtim)
e Butno ACK! SYN-ACK
« Connections stay “half-open” on the s

server until they timeout

- Keeping state consumes resources
- Can lead to Denial of Service (DoS) W’

« Can the server limit the number of

SYNs from the same host? \s_m\‘
- No! the attacker can easily i
“spoof” the sender IP r//imAﬂL//

TCP-SYN Flood Attack

IP spoofing

)) Client Server
e Canwe impersonate a client?
Syn
%
Do
ACK
< ESTABLISHED >

Three-Way Handshake

IP spoofing

)) Client Server
e Canwe impersonate a client?
- Trivial if we control an intermediate Syn
router!
- Ifwe don't? <
C
Do
ACK
< ESTABLISHED >

Three-Way Handshake

IP spoofing

e Canwe impersonate a client? Clen Server

- Trivial if we control an intermediate Syy

router!

- IFwe don't? o
« We can still send packets with a spoofed Sﬂ-&-P\

IP, without access to the replies

Acg
< ESTABLISHED >

Three-Way Handshake

IP spoofing

)) Client Server
e Canwe impersonate a client?

- Trivial if we control an intermediate Syn
router!

- IfF we don’t?

« We can still send packets with a spoofed
IP, without access to the replies

- It's sufficient to guess SNs for the ACK! Acg
- A(Q)— S:SYN(SNa)

-S — C:SYN(SNs)-ACK(SNa)
- A(C) = S: ACK(SNs) < ESTABLISHED

Three-Way Handshake

IP spoofing

« Can we guess the server’s SN?

* Initial Sequence Number
- Counterincremented over time and for every new connection
- Predictable!

IP spoofing

Why is it bad?

IP spoofing

Why is it bad?

 Bypass IP-based authorization
- Still widely-used today
- SMTP, web-services, firewall IP white/black-listing, etc

IP spoofing

Why is it bad?

 Bypass IP-based authorization
- Still widely-used today
- SMTP, web-services, firewall IP white/black-listing, etc

* Inject data to existing connection

- DNS response (UDP, no SN at all!)

IP spoofing

Why is it bad?

 Bypass IP-based authorization
- Still widely-used today
- SMTP, web-services, firewall IP white/black-listing, etc

* Inject data to existing connection

- DNS response (UDP, no SN at all!)

 Reset existing connections (RST)
- SNcis needed, but only approximately

- Denial of service, or exploit to break some other protocol

IP spoofing

Solution?

« Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)

IP spoofing

Solution?

« Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)

 Different ISN for each client! How?

IP spoofing

Solution?

« Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)
« Different ISN for each client! How?

* RFC6528:
ISN = Timer + H(localip, localport, remoteip, remoteport, secretkey)
- Why we include secretkey?

IP spoofing

Solution?

« Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)
« Different ISN for each client! How?
* RFC6528:

ISN = Timer + H(localip, localport, remoteip, remoteport, secretkey)

- Why we include secretkey?

 Butstill not perfect
- 32bit space possible to guess
- Still trivial if we control routers

- Conclusion : For serious security we need to build on top of TCP

Denial of Service

« Remotely consume a resource of the server
- Bandwidth,
- CPU

- Memory

 Until the resource is depleted

- no more clients can connect

20

Denial of Service

* Typically involves some sort of flooding

« SYN flooding

21

Denial of Service

* Typically involves some sort of flooding
« SYN flooding

* Ping flooding
- ICMP echo request
~$ ping google.com
PING google.com (216.58.215.46) 56(84) bytes of data.
64 bytes from par21s17-in-f14.1e100.net (216.58.215.46): icmp_seq=1 ttl=47 time=52

- Low-level protocol (no use of TCP), can send packets fast
- The server sends a reply back

21

Denial of Service

* Typically involves some sort of flooding
« SYN flooding

* Ping flooding
- ICMP echo request

~$ ping google.com
PING google.com (216.58.215.46) 56(84) bytes of data.
64 bytes from par21s17-in-f14.1e100.net (216.58.215.46): icmp_seq=1 ttl=47 time=52

- Low-level protocol (no use of TCP), can send packets fast
- The server sends a reply back

* We need more resources than the server

- Use many senders at once

21

Smurf attack

e Send an Echo to a broadcast address
 Spoof the sender IP with the sender’s

« All machines flood the victim

é‘qA,
Gfe qu@sr [
rce 1,

Attacker

©

Target

W4/

/ ..
“® - g5 =
\
IP broadcast network

22

Distributed Denial of Service (DDoS)

« Compromise hosts via virus, worm, etc
» Coordinate the attack

 Hard to distinguish from legitimate users

%

Attacker o8
~

Controller

v
%;;%QSV

&/ MSB 23

Victim

Zombies

Fork Bomb

e Another kind of DoS

 Fork, and keep forking in the children

- exponential growth
» Consumes OS resources for process management

 Try this in your own machine!

~$ 0 1]:& 35
some other terminal

~$ 1s
bash: fork: retry: Resource temporarily unavailable

24

Preventing SYN floods

Crucial properties

* Packets need to arrive from multiple source IPs Client Server
- otherwise trivial to filter \
« The adversary spoofs the sender IP
op
- but does not get replies! $
* The server needs to keep state for all fake clients Ack
< ESTABLISHED >

Three-Way Handshake

Preventing SYN floods

Crucial properties

* Packets need to arrive from multiple source IPs Client Server
- otherwise trivial to filter \
« The adversary spoofs the sender IP
op
- but does not get replies! $
* The server needs to keep state for all fake clients Ack
Idea
< ESTABLISHED >

« Make the client store the state!

. . Three-Way Handshake
« Only store state in the server for clients that

have proven to get our replies

Preventing SYN floods

SYN cookies

Client Server

Yy

e

\/

- ESTABLISHED
<

»
>

Three-Way Handshake

Preventing SYN floods

SYN cookies
« Encode the state in the SNs send to client Client Server
- Then forget about the connection (no state!) o

e Check the SNs contained in the client’'s ACK

A%
- Store state only if ok 0%

\/

« Spoofing the source is useless Ack

- The adversary needs to control the users

or the network
< ESTABLISHED >

Three-Way Handshake

Preventing SYN floods

SYN cookies
« Encode the state in the SNs send to client Client Server
- Then forget about the connection (no state!) o

« Check the SNs contained in the client's ACK .
C
- Store state only if ok o

\/

« Spoofing the source is useless Ack

- The adversary needs to control the users

or the network
< ESTABLISHED >

« One approach

- SNs = H(DOFtS, iDS, key, time) || time Three-Way Handshake

Preventing SYN floods

SYN cookies

* One approach Client Server

- SNs = H(ports, ips, key, time) || time YN

* Protocol compliant
pS®

\/

« Problem 1: when ACK is lost
- The server is supposed to resend SYN-ACK Ack
- Butitwon't, it does not store connections!

 Problem 2: options sentin SYN are lost < ESTABLISHED

+ Solution: only use under attack Three-Way Handshake

Preventing DoS

* Client needs to solve a puzzle to connect

- Eg: brute-force a hash (within a controlled range of values)
 Generic solution, also used to prevent spam

 But requires changes to both client and server

28

Achieving secure communication

e TCPisaninherently insecure protocol

- no security against an adversary who controls the network

- limited security against an adversary who simply participates
« Solution

- Use crypto to build a secure connection over an insecure network
« Most widely used: TLS

- Also: IPSec, SSH, ...

e We can also tunnel the traffic of an entire network
- Secure VPN

29

 Widely used in web-browsers

* Crucial use of crypto:
- Assymetric-crypt: exchange keys

- Symmetric crypto: encrypt the main traffic
- Digital signatures: authentication

30

TLS handshake

Client Server

ClientHello
ServerHello
Certificate”
ServerKeyExchange*
CertificateRequest*
ServerHelloDone
Certificate*

ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished

[ChangeCipherSpec]
Finished

Application Data

* = TIPOAIPETIKA

31

TLS handshake

Client Server

version, random1, TLS RSA WITH AES 128 CBC_SHA

ClientHello

version, random2, session id, cipher, PKrsa, Sign(SKca, PK)

[ServerHeIIo) (Certificate)

E(PKrsa, premaster_key)
ready

ready

— Extract master_key from random1 + random2 + premaster_key L

31

Make sure to stay up to date

- SSL 2.0, 1995, Deprecated in 2011
- SSL 3.0, 1996, Deprecated in 2015
TLS 1.0, 1999, Deprecated in 2020
- TLS 1.1, 2006, Deprecated in 2020
- TLS 1.2, 2008

- TLS1.3,2018

But it's hard to do while maintaining compatibility

32

« POODLE
- Manin the middle

- Block the connection until the client tries SSLv3

- The server will hapilly accept it
- TLS_FALLBACK_SCSV: tell the server we are downgrading

33

References

« Ross Anderson, Security Engineering, Chapter 21
 Alook back at "security problems in the TCP/IP protocol suite
* SYN cookies

 Bypassing domain control verification with DNS response spoofing

34

https://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c21.pdf
https://www.cs.columbia.edu/~smb/papers/acsac-ipext.pdf
https://cr.yp.to/syncookies.html
https://labs.detectify.com/2017/09/11/guest-blog-bypassing-domain-control-verification-with-dns-response-spoofing/

