
ΥΣ13 - Computer Security

Network Security

Κώστας Χατζηκοκολάκης

1

Context

• Computers connected in a network

- but also: smartphones, fridges, IoT devices, …

• Each device has an IP address

• Packets are routed via intermediate nodes

• Still using IPv4 (almost 40 year old!)

- very very hard to replace

2

Context

• Attacker model

- Intercept packets

- Modify packets

- Inject packets

- Control some routers

- Participate in any protocol

• Useful to consider combinations of the above

3

Internet protocol suite

Four layers (7 in the OSI model)

• Link

- Physical addresses

- Physical aspects of communication

• Internet

- Addressing (source/dest IP)

- Routing

- Time to live

4

Internet protocol suite

Four layers (7 in the OSI model)

• Transport

- Source/dest ports

- Ordering of packets (Sequence numbers)

- ACKs, checksums

• Application

- The “real data”, application-dependent

5

Internet protocol suite

Protocols

• Link

- Ethernet

- WiFi

- DSL

- …

• Internet

- IP

- ICMP

- …

6

Internet protocol suite

Protocols

• Transport

- TCP

- UDP

- …

• Application

- HTTP / HTTPS

- SSH

- SMTP

- …

7

Internet protocol suite

Packet example

8

IP

• Connectionless communication

- using only source/dest IP addresses

• Routing

- communication across network boundaries

- routing tables kept by routers

- no authentication

• Fragmentation & reassembly

- No reliability

9

TCP

• Connection-based communication

- identified by source/dest IP + port (multiplexing)

• Server process “listens” to a port

- Often determined by the application protocol (HTTP, SMTP, etc)

• Client process connects to dest IP+port

- Source port selection usually random

• Connection established by handshake

• Reliability

10

UDP

• Connectionless communication over IP

• Fast alternative to TCP

- Only 8 bytes overhead, no handshakes

- Stateless

• Some higher-level features

- addressing based on IP+port (multiplexing)

- checksums

• But many missing

- No ACKs (unreliable)

- No ordering

• Often used for “streaming”-like applications
11

Traceroute

traceroute to google.com (216.58.215.46), 30 hops max, 60 byte packets

1 _gateway (195.134.67.1) 0.715 ms 0.789 ms 0.884 ms

2 uoa-ilisia-1-gw.kolettir.access-link.grnet.gr (62.217.96.172) 0.763 ms 0.796 ms 0.835 ms

3 grnet-ias-geant-gw.mx1.ath2.gr.geant.net (83.97.88.65) 1.574 ms 1.630 ms 1.620 ms

4 ae0.mx2.ath.gr.geant.net (62.40.98.140) 31.556 ms 31.650 ms 31.547 ms

5 ae2.mx1.mil2.it.geant.net (62.40.98.150) 25.654 ms 27.861 ms 27.793 ms

6 72.14.203.32 (72.14.203.32) 25.593 ms 25.766 ms 25.500 ms

7 108.170.245.73 (108.170.245.73) 64.548 ms 108.170.245.89 (108.170.245.89) 73.238 ms 108.170.245.72 (108.170.245.72) 65.128 ms

8 209.85.142.221 (209.85.142.221) 72.001 ms 72.14.238.21 (72.14.238.21) 71.999 ms 69.884 ms

9 216.239.35.201 (216.239.35.201) 78.302 ms 78.299 ms 78.277 ms

10 209.85.251.217 (209.85.251.217) 54.466 ms 72.14.238.54 (72.14.238.54) 54.472 ms 108.170.230.204 (108.170.230.204) 54.975 ms

11 108.170.245.1 (108.170.245.1) 52.509 ms 52.443 ms 50.669 ms

12 108.170.235.15 (108.170.235.15) 54.116 ms 51.975 ms 51.967 ms

13 par21s17-in-f14.1e100.net (216.58.215.46) 51.943 ms 54.241 ms 54.202 ms

12

Traceroute

• Time to live (TTL)

- IP header

- Decreased at every hop

- If 0 the router discards and notifies the originator (ICMP time
exceeded)

• Traceroute: repeatedly send packets (ICMP echo request)

- with TTL = 1, 2, …

- 3 packets for every value

- Until we reach the host (or a threshold)

- Routers might not respond

13

TCP 3-way handshake

• Connection identified by
source/dest address/port

• Sequence numbers (SN)
in every message

• Handshake

- SYN(SNc)

- SYN(SNs)-ACK(SNc)

- ACK(SNs)

- Data-exchange (bidirect.)

• What can go wrong here?

14

TCP 3-way handshake

• Connection identified by
source/dest address/port

• Sequence numbers (SN)
in every message

• Handshake

- SYN(SNc)

- SYN(SNs)-ACK(SNc)

- ACK(SNs)

- Data-exchange (bidirect.)

• What can go wrong here?

14

SYN flood

• Flood the server with SYNs

• But no ACK!

• Connections stay “half-open” on the
server until they timeout

- Keeping state consumes resources

- Can lead to Denial of Service (DoS)

• Can the server limit the number of
SYNs from the same host?

- No! the attacker can easily
“spoof” the sender IP

15

SYN flood

• Flood the server with SYNs

• But no ACK!

• Connections stay “half-open” on the
server until they timeout

- Keeping state consumes resources

- Can lead to Denial of Service (DoS)

• Can the server limit the number of
SYNs from the same host?

- No! the attacker can easily
“spoof” the sender IP

15

IP spoofing

• Can we impersonate a client?

- Trivial if we control an intermediate
router!

- If we don’t?

• We can still send packets with a spoofed
IP, without access to the replies

- It’s sufficient to guess SNs for the ACK!

- A(C)→ S : SYN(SNa)

- S → C : SYN(SNs)-ACK(SNa)

- A(C)→ S : ACK(SNs)

16

IP spoofing

• Can we impersonate a client?

- Trivial if we control an intermediate
router!

- If we don’t?

• We can still send packets with a spoofed
IP, without access to the replies

- It’s sufficient to guess SNs for the ACK!

- A(C)→ S : SYN(SNa)

- S → C : SYN(SNs)-ACK(SNa)

- A(C)→ S : ACK(SNs)

16

IP spoofing

• Can we impersonate a client?

- Trivial if we control an intermediate
router!

- If we don’t?

• We can still send packets with a spoofed
IP, without access to the replies

- It’s sufficient to guess SNs for the ACK!

- A(C)→ S : SYN(SNa)

- S → C : SYN(SNs)-ACK(SNa)

- A(C)→ S : ACK(SNs)

16

IP spoofing

• Can we impersonate a client?

- Trivial if we control an intermediate
router!

- If we don’t?

• We can still send packets with a spoofed
IP, without access to the replies

- It’s sufficient to guess SNs for the ACK!

- A(C)→ S : SYN(SNa)

- S → C : SYN(SNs)-ACK(SNa)

- A(C)→ S : ACK(SNs)

16

IP spoofing

• Can we guess the server’s SN?

• Initial Sequence Number

- Counter incremented over time and for every new connection

- Predictable!

17

IP spoofing

Why is it bad?

• Bypass IP-based authorization

- Still widely-used today

- SMTP, web-services, firewall IP white/black-listing, etc

• Inject data to existing connection

- DNS response (UDP, no SN at all!)

• Reset existing connections (RST)

- SNc is needed, but only approximately

- Denial of service, or exploit to break some other protocol

18

IP spoofing

Why is it bad?

• Bypass IP-based authorization

- Still widely-used today

- SMTP, web-services, firewall IP white/black-listing, etc

• Inject data to existing connection

- DNS response (UDP, no SN at all!)

• Reset existing connections (RST)

- SNc is needed, but only approximately

- Denial of service, or exploit to break some other protocol

18

IP spoofing

Why is it bad?

• Bypass IP-based authorization

- Still widely-used today

- SMTP, web-services, firewall IP white/black-listing, etc

• Inject data to existing connection

- DNS response (UDP, no SN at all!)

• Reset existing connections (RST)

- SNc is needed, but only approximately

- Denial of service, or exploit to break some other protocol

18

IP spoofing

Why is it bad?

• Bypass IP-based authorization

- Still widely-used today

- SMTP, web-services, firewall IP white/black-listing, etc

• Inject data to existing connection

- DNS response (UDP, no SN at all!)

• Reset existing connections (RST)

- SNc is needed, but only approximately

- Denial of service, or exploit to break some other protocol

18

IP spoofing

Solution?

• Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)

• Different ISN for each client! How?

• RFC 6528:
ISN = Timer + H(localip, localport, remoteip, remoteport, secretkey)

- Why we include secretkey?

• But still not perfect

- 32bit space possible to guess

- Still trivial if we control routers

- Conclusion : For serious security we need to build on top of TCP

19

IP spoofing

Solution?

• Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)

• Different ISN for each client! How?

• RFC 6528:
ISN = Timer + H(localip, localport, remoteip, remoteport, secretkey)

- Why we include secretkey?

• But still not perfect

- 32bit space possible to guess

- Still trivial if we control routers

- Conclusion : For serious security we need to build on top of TCP

19

IP spoofing

Solution?

• Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)

• Different ISN for each client! How?

• RFC 6528:
ISN = Timer + H(localip, localport, remoteip, remoteport, secretkey)

- Why we include secretkey?

• But still not perfect

- 32bit space possible to guess

- Still trivial if we control routers

- Conclusion : For serious security we need to build on top of TCP

19

IP spoofing

Solution?

• Routers expect ISN to be increasing

- Protocol bugs are hard to fix (compared to implementation bugs)

• Different ISN for each client! How?

• RFC 6528:
ISN = Timer + H(localip, localport, remoteip, remoteport, secretkey)

- Why we include secretkey?

• But still not perfect

- 32bit space possible to guess

- Still trivial if we control routers

- Conclusion : For serious security we need to build on top of TCP

19

Denial of Service

• Remotely consume a resource of the server

- Bandwidth,

- CPU

- Memory

- …

• Until the resource is depleted

- no more clients can connect

20

Denial of Service

• Typically involves some sort of flooding

• SYN flooding

• Ping flooding

- ICMP echo request
~$ ping google.com

PING google.com (216.58.215.46) 56(84) bytes of data.

64 bytes from par21s17-in-f14.1e100.net (216.58.215.46): icmp_seq=1 ttl=47 time=52.1 ms

- Low-level protocol (no use of TCP), can send packets fast

- The server sends a reply back

• We need more resources than the server

- Use many senders at once

21

Denial of Service

• Typically involves some sort of flooding

• SYN flooding

• Ping flooding

- ICMP echo request
~$ ping google.com

PING google.com (216.58.215.46) 56(84) bytes of data.

64 bytes from par21s17-in-f14.1e100.net (216.58.215.46): icmp_seq=1 ttl=47 time=52.1 ms

- Low-level protocol (no use of TCP), can send packets fast

- The server sends a reply back

• We need more resources than the server

- Use many senders at once

21

Denial of Service

• Typically involves some sort of flooding

• SYN flooding

• Ping flooding

- ICMP echo request
~$ ping google.com

PING google.com (216.58.215.46) 56(84) bytes of data.

64 bytes from par21s17-in-f14.1e100.net (216.58.215.46): icmp_seq=1 ttl=47 time=52.1 ms

- Low-level protocol (no use of TCP), can send packets fast

- The server sends a reply back

• We need more resources than the server

- Use many senders at once

21

Smurf attack

• Send an Echo to a broadcast address

• Spoof the sender IP with the sender’s

• All machines flood the victim

22

Distributed Denial of Service (DDoS)

• Compromise hosts via virus, worm, etc

• Coordinate the attack

• Hard to distinguish from legitimate users

23

Fork Bomb

• Another kind of DoS

• Fork, and keep forking in the children

- exponential growth

• Consumes OS resources for process management

• Try this in your own machine!

~$:(){ :|:& };:

some other terminal

~$ ls

bash: fork: retry: Resource temporarily unavailable

24

Preventing SYN floods

Crucial properties

• Packets need to arrive frommultiple source IPs

- otherwise trivial to filter

• The adversary spoofs the sender IP

- but does not get replies!

• The server needs to keep state for all fake clients

Idea

• Make the client store the state!

• Only store state in the server for clients that
have proven to get our replies

25

Preventing SYN floods

Crucial properties

• Packets need to arrive frommultiple source IPs

- otherwise trivial to filter

• The adversary spoofs the sender IP

- but does not get replies!

• The server needs to keep state for all fake clients

Idea

• Make the client store the state!

• Only store state in the server for clients that
have proven to get our replies

25

Preventing SYN floods

SYN cookies

• Encode the state in the SNs send to client

- Then forget about the connection (no state!)

• Check the SNs contained in the client’s ACK

- Store state only if ok

• Spoofing the source is useless

- The adversary needs to control the users
or the network

• One approach

- SNs = H(ports, ips, key, time) || time

26

Preventing SYN floods

SYN cookies

• Encode the state in the SNs send to client

- Then forget about the connection (no state!)

• Check the SNs contained in the client’s ACK

- Store state only if ok

• Spoofing the source is useless

- The adversary needs to control the users
or the network

• One approach

- SNs = H(ports, ips, key, time) || time

26

Preventing SYN floods

SYN cookies

• Encode the state in the SNs send to client

- Then forget about the connection (no state!)

• Check the SNs contained in the client’s ACK

- Store state only if ok

• Spoofing the source is useless

- The adversary needs to control the users
or the network

• One approach

- SNs = H(ports, ips, key, time) || time

26

Preventing SYN floods

SYN cookies

• One approach

- SNs = H(ports, ips, key, time) || time

• Protocol compliant

• Problem 1: when ACK is lost

- The server is supposed to resend SYN-ACK

- But it won’t, it does not store connections!

• Problem 2: options sent in SYN are lost

• Solution: only use under attack

27

Preventing DoS

• Client needs to solve a puzzle to connect

- Eg: brute-force a hash (within a controlled range of values)

• Generic solution, also used to prevent spam

• But requires changes to both client and server

28

Achieving secure communication

• TCP is an inherently insecure protocol

- no security against an adversary who controls the network

- limited security against an adversary who simply participates

• Solution

- Use crypto to build a secure connection over an insecure network

• Most widely used: TLS

- Also: IPSec, SSH, …

• We can also tunnel the traffic of an entire network

- Secure VPN

29

TLS

• Widely used in web-browsers

• Crucial use of crypto:

- Assymetric-crypt: exchange keys

- Symmetric crypto: encrypt the main traffic

- Digital signatures: authentication

30

TLS handshake

31

TLS handshake

31

TLS

• Make sure to stay up to date

- SSL 2.0, 1995, Deprecated in 2011

- SSL 3.0, 1996, Deprecated in 2015

- TLS 1.0, 1999, Deprecated in 2020

- TLS 1.1, 2006, Deprecated in 2020

- TLS 1.2, 2008

- TLS 1.3, 2018

• But it’s hard to do while maintaining compatibility

32

TLS

• POODLE

- Man in the middle

- Block the connection until the client tries SSLv3

- The server will hapilly accept it

- TLS_FALLBACK_SCSV: tell the server we are downgrading

33

References

• Ross Anderson, Security Engineering, Chapter 21

• A look back at ”security problems in the TCP/IP protocol suite

• SYN cookies

• Bypassing domain control verification with DNS response spoofing

34

https://www.cl.cam.ac.uk/~rja14/Papers/SEv2-c21.pdf
https://www.cs.columbia.edu/~smb/papers/acsac-ipext.pdf
https://cr.yp.to/syncookies.html
https://labs.detectify.com/2017/09/11/guest-blog-bypassing-domain-control-verification-with-dns-response-spoofing/

