YZ13 - Computer Security

Hashing

Kwotag Xat{nkokoAdkng

e Goal

- Represent large/sensitive message by a smaller one

- Numerous applications

e Goal

- Represent large/sensitive message by a smaller one
- Numerous applications
« Solution : hash function
- h(X> : {03 1}* — {071}n
- h(x) is the hash/digest of x

* One-way

- X — h(x) : easy

* One-way
- X — h(x) : easy
- h(x) — x: hard
- Even to find a single bit of x!
* No collisions

- Do x # X exist such that h(x) = h(x)?

* One-way
- X — h(x) : easy
- h(x) — x: hard
- Even to find a single bit of x!
* No collisions

- Do x # X exist such that h(x) = h(x)? YES
- But the should be hard to find!

Collision-resistance

Birthday paradox

« How many people do we need so that any 2 have the
same birthday with pb 50%?

Collision-resistance

Birthday paradox

« How many people do we need so that any 2 have the
same birthday with pb 50%?

+ Just 23!

_ 4 _ 364 363 365-22 .
« pb=1- 368363 . 365-22 1 0.507

1
‘T 0.9
©.0.8

\23 1 Il Il 1 Il
0 10 20 30 40 50 60 70 804 9
Number of peoble

Collision-resistance

Birthday paradox

« How many people do we need so that any 2 have the
same birthday with pb 50%?

+ Just 23!

_ 4 _ 364 363 365-22 .
« pb=1- 368363 . 365-22 1 0.507

« Approximation oL
‘T 0.9
- e Xx~1—x(x~0) Q0.8

me
- pbx 1 — ez ‘5 0.6

\23 1 Il Il 1 Il
0 10 20 30 40 50 60 70 804 9
Number of peoble

Collision-resistance

Birthday paradox

« mpeople, Tpossible values each
- pbr1—e /2T
- m~a \/—2T In(1—pb)

Collision-resistance

Birthday paradox

« mpeople, Tpossible values each
- pbr1—e /2T

- ma\/=2T In(1—pb)

50 bit hash
- T~ 10" total values (huge)

- m: number of messages we hash

- How many for a 50% collision?

Collision-resistance

Birthday paradox

« mpeople, Tpossible values each
- pbr1—e /2T
- m~a \/—2T In(1—pb)

* 50 bit hash
- T~ 10" total values (huge)
- m: number of messages we hash
- How many for a 50% collision?

- 40M (milliseconds to generate!)

One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages
- Example: password authentication

- Protect against data breach

- Only need to test whether input is correct!

One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages
- Example: password authentication

- Protect against data breach

- Only need to test whether input is correct!

 Solution

- Store h(x)

One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages
- Example: password authentication

- Protect against data breach

- Only need to test whether input is correct!

* Solution
- Store h(x)

- Better: generate random r(salt), store r, h(x, r) why?

One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages
- Example: password authentication
- Protect against data breach
- Only need to test whether input is correct!
- Solution
- Store h(x)
- Better: generate random r(salt), store r, h(x, r) why?
» Which properties of / does this rely on?

One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages
- Example: password authentication

- Protect against data breach

- Only need to test whether input is correct!

* Solution

- Store h(x)

- Better: generate random r(salt), store r, h(x, r) why?
« Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

One-way encryption

Can we break it?

 Preimage attack: find X such that h(x') matches the given h(x)

One-way encryption

Can we break it?

 Preimage attack: find X such that h(x') matches the given h(x)

« Assume 365 outputs. How many x's to generate for 50% success pb?

One-way encryption

Can we break it?

 Preimage attack: find X such that h(x') matches the given h(x)

« Assume 365 outputs. How many x's to generate for 50% success pb?

e 253! huh? but we said 23...

One-way encryption

Can we break it?

 Preimage attack: find X such that h(x') matches the given h(x)

« Assume 365 outputs. How many x's to generate for 50% success pb?
+ 253! huh? but we said 23...

« Different problem: pb that someone has the same birthday as you!

_ 364"
*pb=1- 35
0, 1.0
(only 6% for n = 23) 7
0.8 ._-"
0.6 ': p(n)
: q(n)
04 .:
02
0'00 50 100 150 200 250 300 350 400 7

« Assume: sign(x, Alice) is @ message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

Assume: sign(x, Alice) is @ message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

« Can be used to show approval of x
- Eg: xis a contract signed by Alice

- Butitis expensive for large x
« Solution: provide sign(/(x), Alice)

+ Alice needs to know x to construct A(x)!

« Assume: sign(x, Alice) is @ message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

« Can be used to show approval of x
- Eg: xis a contract signed by Alice
- Butitis expensive for large x

« Solution: provide sign(/(x), Alice)

+ Alice needs to know x to construct A(x)!

- Does this show approval of x?

« Assume: sign(x, Alice) is @ message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

« Can be used to show approval of x
- Eg: xis a contract signed by Alice
- Butitis expensive for large x

« Solution: provide sign(/(x), Alice)

+ Alice needs to know x to construct A(x)!

- Does this show approval of x? Yes if collision-free

« Assume: sign(x, Alice) is @ message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

« Can be used to show approval of x
- Eg: xis a contract signed by Alice

- Butitis expensive for large x
« Solution: provide sign(/(x), Alice)

+ Alice needs to know x to construct A(x)!
- Does this show approval of x? Yes if collision-free
- One-wayness can be useful if we want to reveal xin the future!

Can we break it?

« Alice wants to force bob into signing a fraudulent contract x' !

Can we break it?

« Alice wants to force bob into signing a fraudulent contract x' !
 Collision attack: find

- honest contract xand fraudulent contract X
- such that h(x) = h(xX)

- So Bob will provide sign(h(x), Bob) = sign(/(x'), Bob)

Can we break it?

« Alice wants to force bob into signing a fraudulent contract x' !
 Collision attack: find

- honest contract xand fraudulent contract ¥
- such that h(x) = h(xX)

- So Bob will prowde sign(h(x),Bob) = sign(/(x), Bob)

« Assume 365 outputs. How many x, X's to generate for 50% success pb?

Can we break it?

« Alice wants to force bob into signing a fraudulent contract x' !
 Collision attack: find

- honest contract xand fraudulent contract ¥
- such that h(x) = h(xX)

- So Bob will prowde sign(h(x),Bob) = sign(/(x), Bob)

« Assume 365 outputs. How many x, X's to generate for 50% success pb?
- 23, but...

Can we break it?

« Alice wants to force bob into signing a fraudulent contract x' !

 Collision attack: find

- honest contract xand fraudulent contract ¥
- such that h(x) = h(xX)

- So Bob will prowde sign(h(x),Bob) = sign(/(x), Bob)
« Assume 365 outputs. How many x, X's to generate for 50% success pb?
- 23, but...

- useless if x, ¥ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)

ldeal hash function

« Random Oracle

- Given x € {0, 1}*, generate
random h(x) € {0,1}"

- Remember it for future calls!

ldeal hash function

« Random Oracle

- Given x € {0, 1}*, generate
random h(x) € {0,1}"

- Remember it for future calls!

e Is this one-way?

ldeal hash function

« Random Oracle

- Given x € {0, 1}*, generate
random h(x) € {0,1}"

- Remember it for future calls!
e Is this one-way?

- Pb[h(x) = y] = Pb[h(X) = y] for any x, X
- So xand h(x) are independent
(the oracle does not use x!)

ldeal hash function

« Random Oracle

- Given x € {0, 1}*, generate
random h(x) € {0,1}"

- Remember it for future calls!

e Is this one-way?
- Pb[h(x) = y] = Pb[h(X) = y] for any x, X
- So xand h(x) are independent

(the oracle does not use x!)

e |s this collision-resistant?

ldeal hash function

« Random Oracle

- Given x € {0, 1}*, generate
random h(x) € {0,1}"

- Remember it for future calls!
e Is this one-way?
- Pb[h(x) = y] = Pb[h(X) = y] for any x, X
- So xand h(x) are independent
(the oracle does not use x!)
* Is this collision-resistant?

- As much as the birthday paradox allows!

Constructing a hash function

 Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

Constructing a hash function

 Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

« We can also do the opposite!
- Given a block cipher, construct a hash
- Use the input xas the key
- Start hfrom 0, update each time hia

- XOR with the output of the previous round

Constructing a hash function

 Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

« We can also do the opposite!

- Given a block cipher, construct a hash
- Use the input xas the key

Start hfrom 0, update each time hia

- XOR with the output of the previous round

e Needs at least 128 bits block size!

- How many messages for 0.0001%
collision? Do the math...

- Used in practice with AES

Merkle-Damgard

« Compression function f: {0,1}" x {0,1}? — {0,1}"
« If fis collision-resistant, sois h

 Padding if the last block is smaller. How?

Padding

[I
|(bl0ckn)||
l’——.‘\
i’ Ay
L []
AN o 12

(block 1) (block 2)

Merkle-Damgard

« Compression function f: {0,1}" x {0,1}? — {0,1}"
« If fis collision-resistant, sois h

 Padding if the last block is smaller. How?

- Isit safe to add zeroes?

Padding

[I
|(bl0ckn)||
l’——.‘\
i’ Ay
L []
AN o 12

(block 1) | (block 2)

Merkle-Damgard

« Compression function f: {0,1}" x {0,1}? — {0,1}"
« If fis collision-resistant, sois h

 Padding if the last block is smaller. How?
- Isit safe to add zeroes?
- No! h(HashInpu t) = h(HashInpu t0EEEE0)

Padding

[I
|(bl0ckn)||
l’ .‘\
i’ Ay
L []
K 4 12

(block 1) | (block 2)

Merkle-Damgard

« Compression function f: {0,1}" x {0,1}? — {0,1}"

« If fis collision-resistant, sois h

Padding if the last block is smaller. How?
- Isit safe to add zeroes?
- No! h(HashInpu t) = h(HashInpu t0EEEE0)

Safe conditions
- [m| = [mg| : |Pad(my)| = [Pad(my)|
- |m| # |my]| : Pad(myq), Pad(m,) differin the last block

Padding

] I
|(blockn)||
N

p
Al
(v~ —1]
U
\ 4 12

Common:

(block 1) | (block 2)

- HashInpu t1000000 <size>

Merkle-Damgard

Length extension

 Can we construct A(my||m,) from h(mq)?

Padding

] I
|(bl0ckn)||

[”——.“
Al
(v~ L]
U
. S 13

(block 1) | (block 2)

Merkle-Damgard

Length extension

 Can we construct A(my||m,) from h(mq)?

« What if padding is used?

Padding

[I
|(bl0ckn)||
l’ .‘\
i’ Ay
L []
AN 4 13

(block 1) | (block 2)

Merkle-Damgard

Length extension
 Can we construct A(my||m,) from h(mq)?
« What if padding is used?

* Does this violate
- one-wayness?

- collision-resistance?

Padding

[I

|(bl0ckn)||

P

i’ Ay

L []

N 13

(block 1) | (block 2)

Merkle-Damgard

Length extension

 Can we construct A(my||m,) from h(mq)?

What if padding is used?

* Does this violate
- one-wayness?

- collision-resistance?

* Isita problem?

Padding

[I

|(bl0ckn)||

P

i’ Ay

L []

N 13

(block 1) | (block 2)

Merkle-Damgard

Length extension

 Can we construct A(my||m,) from h(mq)?

What if padding is used?

* Does this violate
- one-wayness?

- collision-resistance?

* Isita problem?

Padding

[I

|(bl0ckn)||

P

i’ Ay

L []

N 13

- Maybe...we'll come back shortly

(block 1) | (block 2)

128 bits output

512 bit blocks (with padding)
Merkle-Damgard design

Compression function:
- 4 rounds of 16 operations

- 4 simple non-linear functions F

a8 [c]o]
B

-

o

MD5

Attacks
* 1996: collisions in the compression function [a [8 | ¢ [b |
* 2004: collision attacks E‘“—
. w-~EH
« 2008: fraudulent certificate .
K‘—PEH

« Common suffix can be added
- h(my) = h(m2) = h(mx||m) = h(m;||m)
- Similar to length extension

« Preimage attack still hard a8] c]o]

SHA family

SHA-0

NIST, 1993

160 bits

Merkle-Damgard design

Attacks
- 1998: theoretical collision in 26" steps
- 2004: real collision (2°7 steps)

- 2008: collision in 23" steps (1 hour on average PC)

SHA family

SHA-1

« SHA-0 + a bitwise rotation in the compression function
- 160 bits, Merkle-Damgard design

 Attacks
- 2005: theoretical collision in 2°° steps

- 2017: real collision

- http://shattered.io0/
- Still expensive: 263 steps (6500 CPU + 100 GPU years)

- Many applications affected (git, svn, ...)
- but no reason to panic

http://shattered.io/

SHA family

* SHA-2
- 2001

- 224/256/384/512 bits, Merkle-Damgard design
- Attacks are still hard

SHA family

* SHA-2
- 2001

- 224/256/384/512 bits, Merkle-Damgard design
- Attacks are still hard

* SHA-3
- 2012
- 224/256/384/512 bits
- The first one not using the Merkle-Damgard design
- Protection against length extension

Protecting integrity

* Problem

- Downloaded 1GB file, how to know it is correct?

Protecting integrity

* Problem
- Downloaded 1GB file, how to know it is correct?
 Solution

- send h(file) together with the file
- Protects against errors

Protecting integrity

e Problem

- Downloaded 1GB file, how to know it is correct?
 Solution

- send h(file) together with the file

- Protects against errors

* Does it protect against a malicious adversary?

Protecting integrity

* Problem

- Downloaded 1GB file, how to know it is correct?

 Solution

- send h(file) together with the file
- Protects against errors

* Does it protect against a malicious adversary?

- No! The adversary can alter both the file and its digest

Protecting integrity

MAC
 Keyed function

- MAC, : {0,1}* = {0,1}"
« Unforgeable

- cannot produce MAC,(m) without k

- evenif (my, MAC,(my)), ..., (mg, MAC,(my)) are known!

« Alice and Bob need a shared key k

20

Protecting integrity

HMAC

« construct MAC, from a hash h how?

21

Protecting integrity

HMAC

« construct MAC, from a hash h how?

« HMAC,(m) = h(k|m)?

21

Protecting integrity

HMAC

« construct MAC, from a hash h how?

* HMAC(m) = h(k||m)?
- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k|jurl)

21

Protecting integrity

HMAC

« construct MAC, from a hash h how?
* HMAC(m) = h(k||m)?
- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k|jurl)

« HMAC,(m) = h(m||k) ?

21

Protecting integrity

HMAC

« construct MAC, from a hash h how?
* HMAC(m) = h(k||m)?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k|jurl)
« HMAC,(m) = h(m||k) ?

- Better, but collisions are easily exploitable

21

Protecting integrity

HMAC

« construct MAC, from a hash h how?

HMAC,(m) = h(k||m)?
- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k|jurl)

HMACk(m) = h(m||k) ?

- Better, but collisions are easily exploitable

HMAC,(m) = h(m||k||m)?

- Better, with some vulnerabilities

21

Protecting integrity

HMAC

« construct MAC, from a hash h how?

* HMAC(m) = h(k||m)?
- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k|jurl)

HMACk(m) = h(m||k) ?

- Better, but collisions are easily exploitable

HMAC,(m) = h(m||k||m)?

- Better, with some vulnerabilities

HMAC,(m) = h(m||h(K||m))

- standard approach y

References

« Mironov, Hash functions: Theory attacks and applications.

« Ross Anderson, Security Engineering, Sections 5.3.1, 5.6

22

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/11/hash_survey.pdf

