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* One-way
- X — h(x) : easy
- h(x) — x: hard
- Even to find a single bit of x!
* No collisions

- Do x # X exist such that h(x) = h(x)? YES
- But the should be hard to find!
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Birthday paradox

« How many people do we need so that any 2 have the
same birthday with pb 50%?

+ Just 23!

_ 4 _ 364 363 365-22 .
« pb=1- 368363 . 365-22 1 0.507
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Collision-resistance

Birthday paradox

« mpeople, Tpossible values each
- pbr1—e /2T
- m~a \/—2T In(1—pb)

* 50 bit hash
- T~ 10" total values (huge)
- m: number of messages we hash
- How many for a 50% collision?

- 40M (milliseconds to generate!)
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One-way encryption

+ Goal
- Store xin an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages
- Example: password authentication

- Protect against data breach

- Only need to test whether input is correct!

* Solution

- Store h(x)

- Better: generate random r(salt), store r, h(x, r) why?
« Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password
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One-way encryption

Can we break it?

 Preimage attack: find X such that h(x') matches the given h(x)

« Assume 365 outputs. How many x's to generate for 50% success pb?
+ 253! huh? but we said 23...

« Different problem: pb that someone has the same birthday as you!
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« Assume: sign(x, Alice) is @ message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

« Can be used to show approval of x
- Eg: xis a contract signed by Alice

- Butitis expensive for large x
« Solution: provide sign(/(x), Alice)

+ Alice needs to know x to construct A(x)!
- Does this show approval of x? Yes if collision-free
- One-wayness can be useful if we want to reveal xin the future!
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Can we break it?

« Alice wants to force bob into signing a fraudulent contract x' !

 Collision attack: find

- honest contract xand fraudulent contract ¥
- such that h(x) = h(xX)

- So Bob will prowde sign(h(x),Bob) = sign(/(x), Bob)
« Assume 365 outputs. How many x, X's to generate for 50% success pb?
- 23, but...

- useless if x, ¥ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)
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ldeal hash function

« Random Oracle

- Given x € {0, 1}*, generate
random h(x) € {0,1}"

- Remember it for future calls!
e Is this one-way?
- Pb[h(x) = y] = Pb[h(X) = y] for any x, X
- So xand h(x) are independent
(the oracle does not use x!)
* Is this collision-resistant?

- As much as the birthday paradox allows!
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Constructing a hash function

 Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

« We can also do the opposite!

- Given a block cipher, construct a hash
- Use the input xas the key

Start hfrom 0, update each time hia

- XOR with the output of the previous round

e Needs at least 128 bits block size!

- How many messages for 0.0001%
collision? Do the math...

- Used in practice with AES
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Merkle-Damgard

« Compression function f: {0,1}" x {0,1}? — {0,1}"

« If fis collision-resistant, sois h

Padding if the last block is smaller. How?
- Isit safe to add zeroes?
- No! h(HashInpu t) = h(HashInpu t0EEEE0)

Safe conditions
- [m| = [mg| : |Pad(my)| = [Pad(my)|
- |m| # |my]| : Pad(myq), Pad(m,) differin the last block

Padding

] I
|(blockn)||
N

p
Al
(v~ —1]
U
\ 4 12

Common:

(block 1) | (block 2)

- HashInpu t1000000 <size>
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What if padding is used?

* Does this violate
- one-wayness?

- collision-resistance?

* Isita problem?
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Merkle-Damgard

Length extension

 Can we construct A(my||m,) from h(mq)?

What if padding is used?

* Does this violate
- one-wayness?

- collision-resistance?

* Isita problem?

Padding

[ I

|(bl0ckn)||

P

i’ Ay

L [ ]

N 13

- Maybe...we'll come back shortly

(block 1) | (block 2)




128 bits output

512 bit blocks (with padding)
Merkle-Damgard design

Compression function:
- 4 rounds of 16 operations

- 4 simple non-linear functions F

a8 [c]o]
B

-

o




MD5

Attacks
* 1996: collisions in the compression function [ a [ 8 | ¢ [ b |
* 2004: collision attacks E‘“—
. w-~EH
« 2008: fraudulent certificate .
K‘—PEH

« Common suffix can be added
- h(my) = h(m2) = h(mx||m) = h(m;||m)
- Similar to length extension

« Preimage attack still hard a8 ] c]o]




SHA family

SHA-0

NIST, 1993

160 bits

Merkle-Damgard design

Attacks
- 1998: theoretical collision in 26" steps
- 2004: real collision (2°7 steps)

- 2008: collision in 23" steps (1 hour on average PC)



SHA family

SHA-1

« SHA-0 + a bitwise rotation in the compression function
- 160 bits, Merkle-Damgard design

 Attacks
- 2005: theoretical collision in 2°° steps

- 2017: real collision

- http://shattered.io0/
- Still expensive: 263 steps (6500 CPU + 100 GPU years)

- Many applications affected (git, svn, ...)
- but no reason to panic


http://shattered.io/
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SHA family

* SHA-2
- 2001

- 224/256/384/512 bits, Merkle-Damgard design
- Attacks are still hard

* SHA-3
- 2012
- 224/256/384/512 bits
- The first one not using the Merkle-Damgard design
- Protection against length extension
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Protecting integrity

* Problem

- Downloaded 1GB file, how to know it is correct?

 Solution

- send h(file) together with the file
- Protects against errors

* Does it protect against a malicious adversary?

- No! The adversary can alter both the file and its digest



Protecting integrity

MAC
 Keyed function

- MAC, : {0,1}* = {0,1}"
« Unforgeable

- cannot produce MAC,(m) without k

- evenif (my, MAC,(my)), ..., (mg, MAC,(my)) are known!

« Alice and Bob need a shared key k

20
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Protecting integrity

HMAC

« construct MAC, from a hash h how?

* HMAC(m) = h(k||m)?
- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k|jurl)

HMACk(m) = h(m||k) ?

- Better, but collisions are easily exploitable

HMAC,(m) = h(m||k||m)?

- Better, with some vulnerabilities

HMAC,(m) = h(m||h(K||m))

- standard approach y
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