
ΥΣ13 - Computer Security

Hashing

Κώστας Χατζηκοκολάκης

1



Context

• Goal

- Represent large/sensitive message by a smaller one

- Numerous applications

• Solution : hash function

- h(x) : {0,1}∗ → {0,1}n

- h(x) is the hash/digest of x

2



Context

• Goal

- Represent large/sensitive message by a smaller one

- Numerous applications

• Solution : hash function

- h(x) : {0,1}∗ → {0,1}n

- h(x) is the hash/digest of x

2



Properties

• One-way

- x → h(x) : easy

- h(x) → x : hard

· Even to find a single bit of x !

• No collisions

- Do x ̸= x′ exist such that h(x) = h(x′)? YES

- But the should be hard to find!

3



Properties

• One-way

- x → h(x) : easy

- h(x) → x : hard

· Even to find a single bit of x !

• No collisions

- Do x ̸= x′ exist such that h(x) = h(x′)?

YES

- But the should be hard to find!

3



Properties

• One-way

- x → h(x) : easy

- h(x) → x : hard

· Even to find a single bit of x !

• No collisions

- Do x ̸= x′ exist such that h(x) = h(x′)? YES

- But the should be hard to find!

3



Collision-resistance

Birthday paradox

• Howmany people do we need so that any 2 have the
same birthday with pb 50%?

• Just 23!

• pb = 1− 364
365 · 363

365 · . . . · 365−22
365 ≈ 0.507

• Approximation

- e−x ≈ 1− x (x ≈ 0)

- pb ≈ 1− e−
m2

2·365

4



Collision-resistance

Birthday paradox

• Howmany people do we need so that any 2 have the
same birthday with pb 50%?

• Just 23!

• pb = 1− 364
365 · 363

365 · . . . · 365−22
365 ≈ 0.507

• Approximation

- e−x ≈ 1− x (x ≈ 0)

- pb ≈ 1− e−
m2

2·365

4



Collision-resistance

Birthday paradox

• Howmany people do we need so that any 2 have the
same birthday with pb 50%?

• Just 23!

• pb = 1− 364
365 · 363

365 · . . . · 365−22
365 ≈ 0.507

• Approximation

- e−x ≈ 1− x (x ≈ 0)

- pb ≈ 1− e−
m2

2·365

4



Collision-resistance

Birthday paradox

• m people, T possible values each

- pb ≈ 1− e−m2/2T

- m ≈
√

−2T ln(1−pb)

• 50 bit hash

- T ≈ 1015 total values (huge)

- m: number of messages we hash

- Howmany for a 50% collision?

- 40M (milliseconds to generate!)

5



Collision-resistance

Birthday paradox

• m people, T possible values each

- pb ≈ 1− e−m2/2T

- m ≈
√

−2T ln(1−pb)

• 50 bit hash

- T ≈ 1015 total values (huge)

- m: number of messages we hash

- Howmany for a 50% collision?

- 40M (milliseconds to generate!)

5



Collision-resistance

Birthday paradox

• m people, T possible values each

- pb ≈ 1− e−m2/2T

- m ≈
√

−2T ln(1−pb)

• 50 bit hash

- T ≈ 1015 total values (huge)

- m: number of messages we hash

- Howmany for a 50% collision?

- 40M (milliseconds to generate!)

5



One-way encryption

• Goal

- Store x in an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

- Example: password authentication
· Protect against data breach
· Only need to test whether input is correct!

• Solution

- Store h(x)

- Better: generate random r (salt), store r, h(x, r) why?

• Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

6



One-way encryption

• Goal

- Store x in an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

- Example: password authentication
· Protect against data breach
· Only need to test whether input is correct!

• Solution

- Store h(x)

- Better: generate random r (salt), store r, h(x, r) why?

• Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

6



One-way encryption

• Goal

- Store x in an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

- Example: password authentication
· Protect against data breach
· Only need to test whether input is correct!

• Solution

- Store h(x)

- Better: generate random r (salt), store r, h(x, r) why?

• Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

6



One-way encryption

• Goal

- Store x in an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

- Example: password authentication
· Protect against data breach
· Only need to test whether input is correct!

• Solution

- Store h(x)

- Better: generate random r (salt), store r, h(x, r) why?

• Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

6



One-way encryption

• Goal

- Store x in an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

- Example: password authentication
· Protect against data breach
· Only need to test whether input is correct!

• Solution

- Store h(x)

- Better: generate random r (salt), store r, h(x, r) why?

• Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

6



One-way encryption

• Goal

- Store x in an encrypted form

- We don’t need to decrypt, only to test equality of encrypted messages

- Example: password authentication
· Protect against data breach
· Only need to test whether input is correct!

• Solution

- Store h(x)

- Better: generate random r (salt), store r, h(x, r) why?

• Which properties of h does this rely on?

- One-wayness: should not learn the password

- Collision-resistance: should not login with different password

6



One-way encryption

Can we break it?

• Preimage attack : find x′ such that h(x′)matches the given h(x)

• Assume 365 outputs. Howmany x′s to generate for 50% success pb?

• 253! huh? but we said 23…

• Different problem: pb that someone has the same birthday as you!

• pb = 1− 364
365

n

(only 6% for n = 23)

7



One-way encryption

Can we break it?

• Preimage attack : find x′ such that h(x′)matches the given h(x)

• Assume 365 outputs. Howmany x′s to generate for 50% success pb?

• 253! huh? but we said 23…

• Different problem: pb that someone has the same birthday as you!

• pb = 1− 364
365

n

(only 6% for n = 23)

7



One-way encryption

Can we break it?

• Preimage attack : find x′ such that h(x′)matches the given h(x)

• Assume 365 outputs. Howmany x′s to generate for 50% success pb?

• 253! huh? but we said 23…

• Different problem: pb that someone has the same birthday as you!

• pb = 1− 364
365

n

(only 6% for n = 23)

7



One-way encryption

Can we break it?

• Preimage attack : find x′ such that h(x′)matches the given h(x)

• Assume 365 outputs. Howmany x′s to generate for 50% success pb?

• 253! huh? but we said 23…

• Different problem: pb that someone has the same birthday as you!

• pb = 1− 364
365

n

(only 6% for n = 23)

7



Signatures

• Assume: sign(x,Alice) is a message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

• Can be used to show approval of x

- Eg: x is a contract signed by Alice

- But it is expensive for large x

• Solution: provide sign(h(x),Alice)

• Alice needs to know x to construct h(x)!

- Does this show approval of x? Yes if collision-free

- One-wayness can be useful if we want to reveal x in the future!

8



Signatures

• Assume: sign(x,Alice) is a message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

• Can be used to show approval of x

- Eg: x is a contract signed by Alice

- But it is expensive for large x

• Solution: provide sign(h(x),Alice)

• Alice needs to know x to construct h(x)!

- Does this show approval of x? Yes if collision-free

- One-wayness can be useful if we want to reveal x in the future!

8



Signatures

• Assume: sign(x,Alice) is a message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

• Can be used to show approval of x

- Eg: x is a contract signed by Alice

- But it is expensive for large x

• Solution: provide sign(h(x),Alice)

• Alice needs to know x to construct h(x)!

- Does this show approval of x?

Yes if collision-free

- One-wayness can be useful if we want to reveal x in the future!

8



Signatures

• Assume: sign(x,Alice) is a message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

• Can be used to show approval of x

- Eg: x is a contract signed by Alice

- But it is expensive for large x

• Solution: provide sign(h(x),Alice)

• Alice needs to know x to construct h(x)!

- Does this show approval of x? Yes if collision-free

- One-wayness can be useful if we want to reveal x in the future!

8



Signatures

• Assume: sign(x,Alice) is a message that can only be constructed by Alice

- We will see how to do this using asymmetric encryption!

• Can be used to show approval of x

- Eg: x is a contract signed by Alice

- But it is expensive for large x

• Solution: provide sign(h(x),Alice)

• Alice needs to know x to construct h(x)!

- Does this show approval of x? Yes if collision-free

- One-wayness can be useful if we want to reveal x in the future!

8



Signatures

Can we break it?

• Alice wants to force bob into signing a fraudulent contract x′ !

• Collision attack : find

- honest contract x and fraudulent contract x′

- such that h(x) = h(x′)

- So Bob will provide sign(h(x),Bob) = sign(h(x′),Bob)

• Assume 365 outputs. Howmany x, x′s to generate for 50% success pb?

- 23, but...

- useless if x, x′ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)

9



Signatures

Can we break it?

• Alice wants to force bob into signing a fraudulent contract x′ !

• Collision attack : find

- honest contract x and fraudulent contract x′

- such that h(x) = h(x′)

- So Bob will provide sign(h(x),Bob) = sign(h(x′),Bob)

• Assume 365 outputs. Howmany x, x′s to generate for 50% success pb?

- 23, but...

- useless if x, x′ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)

9



Signatures

Can we break it?

• Alice wants to force bob into signing a fraudulent contract x′ !

• Collision attack : find

- honest contract x and fraudulent contract x′

- such that h(x) = h(x′)

- So Bob will provide sign(h(x),Bob) = sign(h(x′),Bob)

• Assume 365 outputs. Howmany x, x′s to generate for 50% success pb?

- 23, but...

- useless if x, x′ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)

9



Signatures

Can we break it?

• Alice wants to force bob into signing a fraudulent contract x′ !

• Collision attack : find

- honest contract x and fraudulent contract x′

- such that h(x) = h(x′)

- So Bob will provide sign(h(x),Bob) = sign(h(x′),Bob)

• Assume 365 outputs. Howmany x, x′s to generate for 50% success pb?

- 23, but...

- useless if x, x′ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)

9



Signatures

Can we break it?

• Alice wants to force bob into signing a fraudulent contract x′ !

• Collision attack : find

- honest contract x and fraudulent contract x′

- such that h(x) = h(x′)

- So Bob will provide sign(h(x),Bob) = sign(h(x′),Bob)

• Assume 365 outputs. Howmany x, x′s to generate for 50% success pb?

- 23, but...

- useless if x, x′ are both honest/fraudulent.

- So we need double the attempts (but still a big problem)

9



Ideal hash function

• Random Oracle

- Given x ∈ {0,1}∗, generate
random h(x) ∈ {0,1}n

- Remember it for future calls!

• Is this one-way?

- Pb[h(x) = y] = Pb[h(x′) = y] for any x, x′

- So x and h(x) are independent
(the oracle does not use x !)

• Is this collision-resistant?

- As much as the birthday paradox allows!

10



Ideal hash function

• Random Oracle

- Given x ∈ {0,1}∗, generate
random h(x) ∈ {0,1}n

- Remember it for future calls!

• Is this one-way?

- Pb[h(x) = y] = Pb[h(x′) = y] for any x, x′

- So x and h(x) are independent
(the oracle does not use x !)

• Is this collision-resistant?

- As much as the birthday paradox allows!

10



Ideal hash function

• Random Oracle

- Given x ∈ {0,1}∗, generate
random h(x) ∈ {0,1}n

- Remember it for future calls!

• Is this one-way?

- Pb[h(x) = y] = Pb[h(x′) = y] for any x, x′

- So x and h(x) are independent
(the oracle does not use x !)

• Is this collision-resistant?

- As much as the birthday paradox allows!

10



Ideal hash function

• Random Oracle

- Given x ∈ {0,1}∗, generate
random h(x) ∈ {0,1}n

- Remember it for future calls!

• Is this one-way?

- Pb[h(x) = y] = Pb[h(x′) = y] for any x, x′

- So x and h(x) are independent
(the oracle does not use x !)

• Is this collision-resistant?

- As much as the birthday paradox allows!

10



Ideal hash function

• Random Oracle

- Given x ∈ {0,1}∗, generate
random h(x) ∈ {0,1}n

- Remember it for future calls!

• Is this one-way?

- Pb[h(x) = y] = Pb[h(x′) = y] for any x, x′

- So x and h(x) are independent
(the oracle does not use x !)

• Is this collision-resistant?

- As much as the birthday paradox allows!

10



Constructing a hash function

• Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

• We can also do the opposite!

- Given a block cipher, construct a hash

- Use the input x as the key

- Start h from 0, update each time

- XOR with the output of the previous round

• Needs at least 128 bits block size!

- Howmany messages for 0.0001%
collision? Do the math…

- Used in practice with AES

11



Constructing a hash function

• Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

• We can also do the opposite!

- Given a block cipher, construct a hash

- Use the input x as the key

- Start h from 0, update each time

- XOR with the output of the previous round

• Needs at least 128 bits block size!

- Howmany messages for 0.0001%
collision? Do the math…

- Used in practice with AES

11



Constructing a hash function

• Recall: we can create a block cipher from a random function (Feistel)

- in other words: from an ideal hash function

• We can also do the opposite!

- Given a block cipher, construct a hash

- Use the input x as the key

- Start h from 0, update each time

- XOR with the output of the previous round

• Needs at least 128 bits block size!

- Howmany messages for 0.0001%
collision? Do the math…

- Used in practice with AES

11



Merkle-Damgård

• Compression function f : {0,1}n × {0,1}b → {0,1}n

• If f is collision-resistant, so is h

• Padding if the last block is smaller. How?

- Is it safe to add zeroes?

- No! h(HashInpu t) = h(HashInpu t000000)

• Safe conditions

- |m1| = |m2| : |Pad(m1)| = |Pad(m2)|
- |m1| ̸= |m2| : Pad(m1),Pad(m2) differ in the last block

• Common:

- HashInpu t1000000 <size>

12



Merkle-Damgård

• Compression function f : {0,1}n × {0,1}b → {0,1}n

• If f is collision-resistant, so is h

• Padding if the last block is smaller. How?

- Is it safe to add zeroes?

- No! h(HashInpu t) = h(HashInpu t000000)

• Safe conditions

- |m1| = |m2| : |Pad(m1)| = |Pad(m2)|
- |m1| ̸= |m2| : Pad(m1),Pad(m2) differ in the last block

• Common:

- HashInpu t1000000 <size>

12



Merkle-Damgård

• Compression function f : {0,1}n × {0,1}b → {0,1}n

• If f is collision-resistant, so is h

• Padding if the last block is smaller. How?

- Is it safe to add zeroes?

- No! h(HashInpu t) = h(HashInpu t000000)

• Safe conditions

- |m1| = |m2| : |Pad(m1)| = |Pad(m2)|
- |m1| ̸= |m2| : Pad(m1),Pad(m2) differ in the last block

• Common:

- HashInpu t1000000 <size>

12



Merkle-Damgård

• Compression function f : {0,1}n × {0,1}b → {0,1}n

• If f is collision-resistant, so is h

• Padding if the last block is smaller. How?

- Is it safe to add zeroes?

- No! h(HashInpu t) = h(HashInpu t000000)

• Safe conditions

- |m1| = |m2| : |Pad(m1)| = |Pad(m2)|
- |m1| ̸= |m2| : Pad(m1),Pad(m2) differ in the last block

• Common:

- HashInpu t1000000 <size>

12



Merkle-Damgård

Length extension

• Can we construct h(m1∥m2) from h(m1) ?

• What if padding is used?

• Does this violate

- one-wayness?

- collision-resistance?

• Is it a problem?

- Maybe…we’ll come back shortly

13



Merkle-Damgård

Length extension

• Can we construct h(m1∥m2) from h(m1) ?

• What if padding is used?

• Does this violate

- one-wayness?

- collision-resistance?

• Is it a problem?

- Maybe…we’ll come back shortly

13



Merkle-Damgård

Length extension

• Can we construct h(m1∥m2) from h(m1) ?

• What if padding is used?

• Does this violate

- one-wayness?

- collision-resistance?

• Is it a problem?

- Maybe…we’ll come back shortly

13



Merkle-Damgård

Length extension

• Can we construct h(m1∥m2) from h(m1) ?

• What if padding is used?

• Does this violate

- one-wayness?

- collision-resistance?

• Is it a problem?

- Maybe…we’ll come back shortly

13



Merkle-Damgård

Length extension

• Can we construct h(m1∥m2) from h(m1) ?

• What if padding is used?

• Does this violate

- one-wayness?

- collision-resistance?

• Is it a problem?

- Maybe…we’ll come back shortly

13



MD5

• 128 bits output

• 512 bit blocks (with padding)

• Merkle-Damgård design

• Compression function:

- 4 rounds of 16 operations

- 4 simple non-linear functions F

14



MD5

Attacks

• 1996: collisions in the compression function

• 2004: collision attacks

• 2008: fraudulent certificate

• Common suffix can be added

- h(m1) = h(m2) ⇒ h(m1∥m) = h(m2∥m)

- Similar to length extension

• Preimage attack still hard

15



SHA family

SHA-0

• NIST, 1993

• 160 bits

• Merkle-Damgård design

• Attacks

- 1998: theoretical collision in 261 steps

- 2004: real collision (251 steps)

- 2008: collision in 231 steps (1 hour on average PC)

16



SHA family

SHA-1

• SHA-0 + a bitwise rotation in the compression function

- 160 bits, Merkle-Damgård design

• Attacks

- 2005: theoretical collision in 269 steps

- 2017: real collision

· http://shattered.io/

· Still expensive: 263 steps (6500 CPU + 100 GPU years)

- Many applications affected (git, svn, …)

· but no reason to panic

17

http://shattered.io/


SHA family

• SHA-2

- 2001

- 224/256/384/512 bits, Merkle-Damgård design

- Attacks are still hard

• SHA-3

- 2012

- 224/256/384/512 bits

- The first one not using the Merkle-Damgård design

- Protection against length extension

18



SHA family

• SHA-2

- 2001

- 224/256/384/512 bits, Merkle-Damgård design

- Attacks are still hard

• SHA-3

- 2012

- 224/256/384/512 bits

- The first one not using the Merkle-Damgård design

- Protection against length extension

18



Protecting integrity

• Problem

- Downloaded 1GB file, how to know it is correct?

• Solution

- send h(file) together with the file

- Protects against errors

• Does it protect against a malicious adversary?

- No! The adversary can alter both the file and its digest

19



Protecting integrity

• Problem

- Downloaded 1GB file, how to know it is correct?

• Solution

- send h(file) together with the file

- Protects against errors

• Does it protect against a malicious adversary?

- No! The adversary can alter both the file and its digest

19



Protecting integrity

• Problem

- Downloaded 1GB file, how to know it is correct?

• Solution

- send h(file) together with the file

- Protects against errors

• Does it protect against a malicious adversary?

- No! The adversary can alter both the file and its digest

19



Protecting integrity

• Problem

- Downloaded 1GB file, how to know it is correct?

• Solution

- send h(file) together with the file

- Protects against errors

• Does it protect against a malicious adversary?

- No! The adversary can alter both the file and its digest

19



Protecting integrity

MAC

• Keyed function

- MACk : {0,1}∗ → {0,1}n

• Unforgeable

- cannot produce MACk(m)without k

- even if (m1,MACk(m1)), . . . , (mk,MACk(mk)) are known!

• Alice and Bob need a shared key k

20



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach

21



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach

21



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach

21



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach

21



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach

21



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach

21



Protecting integrity

HMAC

• construct MACk from a hash h how?

• HMACk(m) = h(k∥m) ?

- Length extension attack!

- url: bank.com/transfer?from=Alice, digest: h(k∥url)

• HMACk(m) = h(m∥k) ?

- Better, but collisions are easily exploitable

• HMACk(m) = h(m∥k∥m) ?

- Better, with some vulnerabilities

• HMACk(m) = h(m∥h(k∥m))

- standard approach
21



References

• Mironov, Hash functions: Theory attacks and applications.

• Ross Anderson, Security Engineering, Sections 5.3.1, 5.6

22

https://www.microsoft.com/en-us/research/wp-content/uploads/2005/11/hash_survey.pdf

