
ΥΣ13 - Computer Security

Buffer Overflows

Κώστας Χατζηκοκολάκης

1

Context

• General problem : unsanitized user input

• Low level language (eg C): overflow a local array (buffer)

• Write over the stack!

• Overwrite the return address

• Execute adversary-controlled code

- from the target program, a library, etc

- or stored in the buffer

2

Context

• It’s much easier to understand buffer overflows by reproducing one

• Try to reproduce the one we live-coded in the lecture

- Use the given code & Makefile

• The slides will guide you through the process

• Read also while progressing:

- Aleph One, Smashing The Stack For Fun And Profit

3

https://insecure.org/stf/smashstack.html

Outline

• Understand the stack

• Disassemble a test program

• Produce an overflow, watch the return address being overwritten

• Write a shellcode in C

• Write a shellcode in assembly, obtain machine code

• Test the binary, overflow our own buffer

• 1st attack: guess the buffer’s address in the target

• 2nd attack: add NOPs for faster guessing

4

The stack

• Grows with every function call (towards lower addresses)

• Caller

- stores function arguments in reverse order

- makes call, which stores EIP (return addr.)

• Callee

- saves old EBP, sets EBP = ESP

- lowers ESP to make room for local vars
(also saves some registers, if needed)

- Args: EBP+n

- Local vars: EBP-n

- Restore ESP/EBP on exit

5

The stack

Task

• Compile a simple program (test.c)

- Makefile (options for simpler assembly)

• Disassemble with gdb

- GDB tutorial

• Read the assembly of main,foo (it’s simple!)

- Understand the stack management
procedure in the assembly code

• Modify test.c, observe changes in the code

6

http://www.bitforestinfo.com/2017/12/gdb-tutorials-debug-disassemble-c-programs-gdb-tutorial-in-ubuntu-part-one-buffer-overflow-exploitation-tutorial-reverse-engenering-programs-get-assemble-codes-of-binary-files-what-is-gdb-how-to-install-gdb-in-linux.html

Buffer overflow

• Input written to a local buffer in the stack

• Large input: continu writing outside the frame

• Overwrite the saved EBP and the return address

• No segfault: this is our own memory

• Return: follow the overwritten address

- this will likely segfault!

7

Buffer overflow

Task : observe a bufffer overflow

• Read and compile target.c

- use -fno-stack-protector -zexecstack

see the Makefile!

• Provide large input, observe crash

• Execute step-by-step with gdb

- Observe the return address (EBP+4)
before and after the overflow

- Observe the crash when the function
returns (not during the overflow)

8

Shellcode

• Goal: execute a bash shell
(provides easy access to all resources)

• Such a malicious code is called shellcode

• Task: write a shellcode in C

- (We’ll write in assembly later)

- Use execve

- Optionally follow by exit(0) to always exit cleanly

- Example: shellcode.c

9

Shellcode

Task: disassemble the shellcode

• Use gdb to disassemble execve, _exit

- understand the system cals

TODO list for the assembly code:

1 Data needed in memory

- string ”/bin/sh”

- The address of array with { ”/bin/sh”, NULL }

10

Shellcode

Task: disassemble the shellcode

2 To call execve

- EAX <- 0xb (code of execve syscall)

- EBX <- the address of ”/bin/sh”

- ECX <- the address of the array

- EDX <- NULL

- Execute call *%gs:0x10 (or int $0x80)

3 To exit

- EAX <- 0xfc (or 0x1)

- EBX <- 0x0 (exit code)

- Execute call *%gs:0x10 (or int $0x80)

11

Shellcode

Problem

• We need ”/bin/sh” in memory

• We can put it in the buffer

• But we don’t know its address!

Solution

• call pushes EIP in the stack

• So we can jump right before ”/bin/sh” (relative jump!)

• call back

• and pop the address we need

12

Shellcode

Solution : assembly

jmp label_binsh // jmp to the call instruction at the end

label_back:

popl %esi // the address of /bin/sh is now in %esi!

...main shellcode...

label_binsh:

call label_back // jump back after pushing EIP

.string ”/bin/sh” // write ”/bin/bash” in the executable

13

Shellcode

Task: write the assembly shellcode

• Straightforward implementation of the TODO list

- Using also the jump trick

• Try it yourself, or look at shellcodeasm.c

• Beware

- The machine code should not contain 0s

- Cause most functions that overflow buffers (strctp, etc) stop at 0s!

- So: change movl $0x0 %eax to xorl %eax, %eax, etc

14

Shellcode

Task: get the machine code

• Disassemble shellcodeasm’s mainwith gdb

• Find the address of the shellcode

- the first jmp command

• Fint the length of the shellcode

- until the end of the /bin/bash string (without the \0)

• Get the machine code with gdb:
x/<length>xb <address>

15

Shellcode

Task: test the shellcode

• Use shellcodetest.c

• Add the shellcode in binary form

• Direct test

- directly set a function’s return address to the buffer

• Overflow test

- set the function’s return adderss by overflowing our own buffer

- buffer content
<buffer-address>

...

<buffer-address>

<shellcode>
16

Attack 1

• We are almost ready!

- We have already overflown our own buffer

• BUT

- We had to put <buffer-address> in the buffer

- We don’t know the buffer’s address in the target

• Solution

- Guess it!

- Start from ESP in a test program, add an offset

- Try different offsets until we get lucky

17

Attack 1

Task : try this attack

• See exploit1.c

• Try different offsets until you get lucky

• Or write a script that does it

• Or cheat by having target.c print it’s buffer address

• Make sure to disable ASLR (see Makefile)

18

Attack 2

Can we do better?

• Goal: tolerate incorrect guesses of buffer-address

• Solution

- Write NOPs before the shellcode

- If execution starts there, it will reach the shellcode

<buffer-address>

...

<buffer-address>

<shellcode>

NOP

...

NOP

19

Attack 2

Task : try this attack

• See exploit2.c

• Try again different offsets

- Success should be easier

20

Counter-measures

Canaries

• Write some value (canary) after the return value

- CR,LF,0,-1

- Random

• Buffer overflow still happens

- but it overwrittes the canary -> detection!

• gcc does this by default

- Try the attack without -fno-stack-protector

• Attacks that don’t overwrite the return address stil possible

21

Counter-measures

Non-executable stack

• Don’t allow execution of stack code

• Needs hardware/OS support

• Linux on modern processors does this by default

- Try the attack without -zexecstack

• Return to pre-existing code in the program or a library (eg libc) still
possible

22

Counter-measures

Non-executable stack

• Don’t allow execution of stack code

• Needs hardware/OS support

• Linux on modern processors does this by default

- Try the attack without -zexecstack

• Return to pre-existing code in the program or a library (eg libc) still
possible

- Just use the system function

23

Counter-measures

Bypassing a non-executable stack

• Return to pre-existing code in the program or a library

- eg. return to the system function (return-to-libc)

- The arguments can be prepared in the stack

• x64 : calling conventions are different

- The first 6 args are passed in registers (RDI, RSI, RDX, RCX, ...)

- So we cannot prepare arguments for system

- Solution
· Find any pop rdi; ret instructions in the code (gadget)
· Put our argument in the stack
· Return to the gadget to load RDI
· Many gadgets can be chained (Return Oriented Programming)

24

Counter-measures

Address space layout randomization (ASLR)

• Randomize the stack’s address

• Makes it harder to guess <buffer-address>

• Linux does this by default

- Try the attack with echo 1 > /proc/sys/kernel/randomize_va_space

• Needs a sufficiently large range (16-bits not enough)

25

References

• Aleph One, Smashing The Stack For Fun And Profit

• GDB tutorial : debug/disassemble C programs using gdb

• Dieter Gollmann, Computer Security, Section 10.4

• c0ntex, Bypassing non-executable-stack during exploitation using
return-to-libc

• Shacham et al, On the Effectiveness of Address-Space Randomization

• 64-bit Linux Return-Oriented Programming

26

https://insecure.org/stf/smashstack.html
http://www.bitforestinfo.com/2017/12/gdb-tutorials-debug-disassemble-c-programs-gdb-tutorial-in-ubuntu-part-one-buffer-overflow-exploitation-tutorial-reverse-engenering-programs-get-assemble-codes-of-binary-files-what-is-gdb-how-to-install-gdb-in-linux.html
https://css.csail.mit.edu/6.858/2014/readings/return-to-libc.pdf
https://css.csail.mit.edu/6.858/2014/readings/return-to-libc.pdf
https://benpfaff.org/papers/asrandom.pdf
https://crypto.stanford.edu/~blynn/rop/

